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“I have done a terrible thing, I have postulated a particle that 
cannot be detected.” 

-Wolfgang Pauli
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550 𝜇s exposure of the NOvA Far Detector

Hits Colored by Charge



Time-zoom on 10 𝜇s interval during NuMI beam pulse

Hits Colored by Charge

100ns Resolution



Close-up of neutrino interaction in the NOvA Far Detector

Hits Colored by Charge

100ns Resolution How best to identify this event?
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NOvA Physics Goals
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Precise measurements:              

Δm232 and sin2(2θ23) for neutrinos and 
antineutrinos #

Strong Constraints on:                                     

θ23 octant                                            #

δcp                                                                              

mass hierarchy                         
#
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νµ Disappearance

Alexander Radovic Deep Learning at NOvA

• Far detector prediction from near detector is compared to far 
detector measurement 

• Neutrino oscillations deplete rate and distort the energy 
spectrum

sin2(2�23)

�m2
32

Monte Carlo

with oscillations

without Oscillations
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νe Appearance

Alexander Radovic Deep Learning at NOvA

By measuring beam muon neutrinos which have oscillated to 
electron neutrinos we gain the power to constrain: 
#
θ23 octant                                            #
δcp                                                                             #

mass hierarchy                         

~400
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νe Appearance

Deep Learning at NOvA

By measuring beam muon neutrinos which have oscillated to 
electron neutrinos we gain the power to constrain: 
#
θ23 octant                                            #
δcp                                                                             #

mass hierarchy                         

From S. Parke, “Neutrino Oscillation Phenomenology”  
in Neutrino Oscillations: Present Status and Future Plans 

Electron neutrinos experience 
an extra interaction as they  
pass through matter, 
modifying  
oscillation probabilities, giving 
us a window into the mass 
hierarchy

Alexander Radovic



The NOvA Experiment
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810 km

MINOS, 
Sudan
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The NOvA Detectors
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15
 m

4 m

60 m

16 m
Optimized for electron ID, fine 
segmentation, Low-Z, and 65% 
Active
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The NOvA Detectors
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15
 m

4 m

60 m

16 m

ND: 330 ton, 1km from source 
FD: 14 kton, 810km from source

9



Detector Technology

16 Cell  
PVC Extrusion

3.9cm

6.0cm
15.6m

Scintillator cell with  
looped WLS Fiber

APD

•  PVC extrusion + Liquid Scintillator 
• mineral oil + 5% pseudocumene 

• Read out via WLS fiber to APD 
• FD has 344,064 channels 
• muon crossing far end~25 PE 

• Layered planes of orthogonal views

10
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NOνA Event Topologies

1 radiation length = 38cm (6 cell depths, 10 cell widths)
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νµ CC Signal

NC Background



Near Detector: 10 𝜇s of readout during NuMI beam pulse

Hits Colored by Time

5ns Resolution
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Near Detector: 10 𝜇s of readout during NuMI beam pulse  

Fermilab JETP, August 6, 2015
25

Time of all hits in Near Det during NuMI spills (~1 hr)

9.6 𝜇s  
NuMI pulse

Hits Colored by Time

5ns Resolution



Conventional PIDs: νµ Selection
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LID: 
Compares longitudinal and 
transverse de/dx in the leading 
shower to different particle 
hypotheses 
Combines that with other topological 
information in an ANN to reject 
backgrounds 

LEM: 
Compares events to a vast library of 
simulated events 
Information about the closest 
matches is fed into a boosted 
decision tree to reject backgrounds 

Conventional PIDs: νe Selection

14
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Neural Networks
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Neural Networks
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x = input vector

y 

y = � (Wx+ b)

� =



Training A Neural Network

17

L(
W

,x
)

W

Start with a “Loss” function which characterizes the 
performance of the network. For supervised learning:

L(W,X) =

1

N

N
examplesX

1

�yi log (f(xi))� (1� yi) log (1� f(xi))
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1
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Add in a regularization term to avoid overfitting:
L0 = L+
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Training A Neural Network

L(W,X) =

1

N

N
examplesX

1

�yi log (f(xi))� (1� yi) log (1� f(xi))

Add in a regularization term to avoid overfitting:
L0 = L+

1

2

X

j

w2
j

Update weights using gradient descent:

Propagate the gradient of the network back to specific nodes 
using back propagation. AKA apply the chain rule:

w
0

j = wj � ↵rwjL

rwjL =
�L

�f

�f

�gn

�gn
�gn�1

...
�gk+1

�gk

�gk
�wj

Start with a “Loss” function which characterizes the 
performance of the network. For supervised learning:



Deep Neural Networks
What if we try to keep all the input data? Why not rely on a 
wide, extremely Deep Neural Network (DNN) to learn the 
features it needs? Sufficiently deep networks make excellent  
function approximators: 
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http://cs231n.github.io/neural-networks-1/

However, until recently they proved almost impossible to train. 

http://cs231n.github.io/neural-networks-1/


The Deep Learning Revolution

19

Most famously “big data” and accelerated computing made it 
easier to find and run deep neural networks:



Better Activation Functions
But there were also some major technical breakthroughs. One 
being more effective back propagation due to better weight 
initialization and saturation functions:

The problem with sigmoids: ReLU: 

http://deepdish.io/

�� (x)

�x

= � (x) (1� � (x))

Sigmoid gradient goes to 0 when x is far from 1. Makes back 
propagation impossible! Use ReLU to avoid saturation. 

ReLU (x)

�x

=

(
1 when x > 0

0 otherwise

http://deepdish.io/


Smarter Training
Another is stochastic gradient 
descent (SGD). In SGD we 
avoid some of the cost of 
gradient descent by 
evaluating as few as one 
event at a time. The 
performance of conventional 
gradient descent is 
approximated as the various 
noisy sub estimates even out, 
with the stochastic behavior 
even allowing for jumping out 
of local minima. 

http://hduongtrong.github.io/

21

http://hduongtrong.github.io/


Dropout
• Same goal as conventional regularization- prevent 

overtraining. 
• Works by randomly removing whole nodes during training 

iterations. At each iteration, randomly set XX% of weights to 
zero and scale the rest up by 1/(1 – 0.XX). 

• Forces the 
network not 
to build 
complex 
interdepende
ncies in the 
extracted 
features.



Convolutional Neural Networks

http://setosa.io/ev/image-kernels/

Input Feature Map
Kernel 23

Instead of training a weight for every input pixel, try learning 
weights that describe kernel operations, convolving that kernel 
across the entire image to exaggerate useful features.   
Inspired by research showing that cells in the visual cortex are 
only responsive to small portions of the visual field. 

http://setosa.io/ev/image-kernels/


Convolutional Neural Networks

Feature Map
23

https://developer.nvidia.com/deep-learning-courses

Instead of training a weight for every input pixel, try learning 
weights that describe kernel operations, convolving that kernel 
across the entire image to exaggerate useful features.   
Inspired by research showing that cells in the visual cortex are 
only responsive to small portions of the visual field. 

https://developer.nvidia.com/deep-learning-courses


Convolutional Layers
• Every trained kernel operation is the same across an entire 

input image or feature map. 
• Each convolutional layer trains an array of kernels to 

produce output feature maps.
• Weights for a given 

convolutional layer are 
a 4D tensor of 
NxMxHxW (number of 
incoming features, 
number of outgoing 
features, height, and 
width)

24



Pooling Layers
• Intelligent downscaling of input feature maps. 
• Stride across images taking either the maximum or average 

value in a patch. 
• Same number of feature maps, with each individual feature 

map shrunk by an amount dependent on the stride of the 
pooling layers.

25



The LeNet
In its simplest form a convolutional neural network is a series 
of convolutional, max pooling, and MLP layers:

The “LeNet” circa 1989

http://deeplearning.net/tutorial/lenet.html http://yann.lecun.com/exdb/lenet/



Modern CNNs
Renaissance in CNN use over the last few years, with increasingly 
complex network-in-network models that allow for deeper learning of 
more complex features.

 “Going deeper with convolutions” arXiv:1409.4842

The brilliance of this inception module is that it uses kernels of several 
sizes but keeps the number of feature maps under control by use of a 
1x1 convolution.

Alexander Radovic Deep Learning at NOvA 27
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The brilliance of this inception module is that it uses kernels of several 
sizes but keeps the number of feature maps under control by use of a 
1x1 convolution.

Renaissance in CNN use over the last few years, with increasingly 
complex network-in-network models that allow for deeper learning of 
more complex features.



Modern CNNs

The “GoogleNet” circa 2014

Convolution 
Pooling 
Softmax 
Other

Alexander Radovic Deep Learning at NOvA 27

The brilliance of this inception module is that it uses kernels of several 
sizes but keeps the number of feature maps under control by use of a 
1x1 convolution.

Renaissance in CNN use over the last few years, with increasingly 
complex network-in-network models that allow for deeper learning of 
more complex features.



Superhuman Performance
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Some examples from one of the early breakout CNNs.
Googles latest “Inception-v3” net achieves 3.46% top 5 error  
rate on the image net dataset. Human performance is at ~5%.



Deep Learning 
at NOvA

Alexander Radovic Deep Learning at NOvA



Deep Learning
What if we use the tools of the deep learning and 
computer vision communities to try and classify 
events? 
#

Alexander Radovic Deep Learning at NOvA 29



Our Input
Our input “image”, is a pair of maps of the hits in a tight 
space/time window. One for the X view and another for the Y 
view. Each “pixel” is the calibrated energy response in that 
cell. All “images” have the same dimensions- 100 planes by 
80 cells. 
#

Alexander Radovic Deep Learning at NOvA 30

X View Y View
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The Training Sample
• 4.7 million, minimally 

preselected simulated events, 
pushed into LevelDB 
databases: 80% for training 
and 20% for testing. 

• Rescale calibrated energy 
depositions to go from 0 to 
255 and truncate to chars for 
dramatically reduced file size 
at no loss of information 

• Fine tuned with 5 million 
cosmic data events taken from 
an out of beam time minimal 
bias trigger. 
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Our Architecture
Based on the first googlenet. Largest 
innovation is splitting each view into a separate 
sequence of layers and concatenating the 
outputs near the end of the network. Named 
“Convolutional Visual Network”, or CVN. 
#
#
The architecture attempts to categorize    
events as {νµ, νe, ντ } × {QE,RES,DIS}, 
NC, or Cosmogenic.	

#
Designed to be a universal classifier.  
#
Built in the excellent CAFFE framework:  
http://caffe.berkeleyvision.org/
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Training Performance
No sign of overtraining- exceptional training test set 
performance agreement!



Example CVN Kernels In Action: 
First Convolution

X

=

Y view

Here the earliest convolutional 
layer in the network starts by 
pulling out primitive shapes and 
lines.  
#
Already “showers” and “tracks” 
are starting to form. 34
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Example CVN Kernels In Action: 
First Inception Module Output

Deeper in the 
network, now after 
the first inception 
module we can see 
more complex 
features have started 
to be extracted. 
#
Some seem 
particularly sensitive 
to muon tracks, EM 
showers, or hadronic 
activity.
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t-SNE Representation of Test 
Sample
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Truth labels, training sample subset.
t-SNE projection of final features to 2D.



t-SNE Representation of Test 
Sample

Alexander Radovic Deep Learning at NOvA 36

NC

νe QE

νµ QE

νµ DIS
νe DIS

Truth labels, training sample subset.
t-SNE projection of final features to 2D.



The Bottom Line
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Excellent separation of the νµ sample, but ~identical to 
existing, much simpler, KNN selector. Matches expectation- 
hard to miss a muon track. Space to improve in cosmic 
rejection.
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After oscillations, cosmic rejection cuts, data quality cuts:
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However our CNN achieves 73% efficiency and 76% purity on 
νe selection at the                optimized cut.  
Equivalent to 30% more exposure with the old PIDs.
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After oscillations, cosmic rejection cuts, data quality cuts:



νe Selection Performance
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Greater than 90% of beam backgrounds contain an 
electromagnetic shower.



CVN in Use For the νe 
Appearance Analysis
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Alexander Radovic Deep Learning at NOvA

Our most powerful tool for understanding our background 
simulation is our functionally equivalent Near Detector.  
Excellent data/MC agreement across the board!

Data Driven Cross Checks: The 
Near Detector
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Data Driven Cross Checks: The 
Near Detector
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Our most powerful tool for understanding our background 
simulation is our functionally equivalent Near Detector.  
Excellent data/MC agreement across the board!
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Data Driven Cross Checks: The 
Near Detector
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Our most powerful tool for understanding our background 
simulation is our functionally equivalent Near Detector.  
Excellent data/MC agreement across the board!



Alexander Radovic Deep Learning at NOvA

How to check our performance on our signal sample using 
the Near Detector? Try faking appeared electron neutrinos by 
creating hybrid data/simulation events.

Data Driven Cross Checks: Muon 
Removed Electron Added

41
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How to check our performance on our signal sample using 
the Near Detector? Try faking appeared electron neutrinos by 
creating hybrid data/simulation events.

Data Driven Cross Checks: Muon 
Removed Electron Added
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Excellent data/MC 
agreement in MRE sample. 
Efficiency difference <1%. 
Smaller than for traditional 
PIDs:

Data Driven Cross Checks: Muon 
Removed Electron Added



Data Driven Cross Checks: Muon 
Removed Bremsstrahlung
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But what about the Far Detector? Try using cosmogenic 
activity. We find Bremsstrahlung, remove the associated 
muon, and see what CVN does in data vs. simulation.
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But what about the Far Detector? Try using cosmogenic 
activity. We find Bremsstrahlung, remove the associated 
muon, and see what CVN does in data vs. simulation.
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But what about the Far Detector? Try using cosmogenic 
activity. We find Bremsstrahlung, remove the associated 
muon, and see what CVN does in data vs. simulation.



Simulation Cross Checks: 
Systematic Studies
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Signal uncertainty (%)
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 Cross Sectionsν
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Background uncertainty (%)
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We also explore a number of simulated uncertainties, 
propagating changes all the way to the final predicted rate of 
signal and background events at the far detector. 
#
Final sys. error: ~5% on signal and ~10% on the background.
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Far Detector Data

45

After exhaustive cross checks we opened the box.  
Excellent data/MC agreement in the 33 selected events 
across the board!
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Far Detector Data

45
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After exhaustive cross checks we opened the box.  
Excellent data/MC agreement in the 33 selected events 
across the board!
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Far Detector Data
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After exhaustive cross checks we opened the box.  
Excellent data/MC agreement in the 33 selected events 
across the board!



The Future
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The original dream
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Reconstruction?"
#

Where we’re going, we don’t need 
reconstruction.



Where we’re really going
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Deep Learning

Conventional  
Reconstruction



Prong ID
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Can we use CVN to ID our reconstructed objects, like 
showers?
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Very promising! Why stop at reconstructed showers though?



Semantic Segmentation
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http://www.cs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 

Semantic segmentation takes advantage of information at 
every lay of a CNN to perform a identification at the pixel 
level.

http://www.cs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf


Recurrent Neural Networks
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/ http://karpathy.github.io/2015/05/21/rnn-effectiveness/

“Recurrent” Neural Networks are a structure for parsing 
sequential information through a recurrent network structure. 
Great at learning patterns, very successful in 
translation tasks. Could be powerful for 
signal processing, more efficient “image” 
parsing, or online triggering?

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Adversarial Networks
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Add nuance to your training by 
pitting it against an adversarial 
network which pushes 
optimization in another direction. 
#
Examples of exciting Deep 
Learning + science research 
here, including recent attempts to 
train out bias to nuisance 
parameters: 
“Learning to Pivot with Adversarial 
Networks”  
arXiv:1611.01046



An Active Field!
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arXiv:1601.07621

Daya Bay MicroBooNE

MicroBooNE-NOTE-1019-PUB



An Active Field!
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MINERvA and MENNDL

PhyStat-nu Fermilab 2016 (19-September 21, 2016)

EM / hadronic component discrimination

electron from 
π!µ!e decay

showers 
from π0 decay

Lariat and ProtoDUNE

Private communication, Robert Sutlej



An Active Field!
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ATLAS:

arXiv:1511.05190

DES:

Private communication, Brian Nord in the  
Dark Energy Survey team



Conclusions
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The first high energy particle physics measurement to use deep 
learning! Already also used in the first NOvA sterile neutrino analysis 
and being explored as an option for a number of other searches.  
#
Just the tip of the iceberg! Huge amounts of room to optimize our 
classification network, and to explore other applications of deep 
learning tools. 
#
While you wait you should check out our recent paper: 
“A Convolutional Neural Network Neutrino Event Classifier” 
A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. Niner, 
G. Pawloski, F. Psihas, A. Sousa, P. Vahle 
https://arxiv.org/abs/1604.01444 
Journal of Instrumentation, Volume 11, September 2016 
#
Join the conversation at https://hepmachinelearning.slack.com/  
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https://arxiv.org/abs/1604.01444
https://hepmachinelearning.slack.com/


Q&A

Many thanks to the NOvA collaboration, Fermilab National Accelerator laboratory, 
and to the National Science Foundation.



HEP Deep Learning Papers
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“A Convolutional Neural Network Neutrino Event Classifier” JINST 11 (2016) no.
09, P09001  
“Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using 
Deep Neural Networks” arXiv:1601.07621 "
“Background rejection in NEXT using deep neural networks” arXiv:1609.06202  
“Searching for exotic particles in high-energy physics with deep learning” 
Nature Communications 5, Article number: 4308 (2014)"
“Jet-Images -- Deep Learning Edition” arXiv:1511.05190 
“Jet Substructure Classification in High-Energy Physics with Deep Neural 
Networks” Phys.Rev. D93 (2016) no.9, 094034"
“Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural 
Networks” arXiv:1609.00607   
“Machine learning techniques in searches for tt¯h in the h→bb¯ decay channel” 
arXiv:1610.03088"
“Learning to Pivot with Adversarial Networks” arXiv:1611.01046"
“Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon 
Time Projection Chamber” MicroBooNE-NOTE-1019-PUB 



Interesting Reading

94

Some high level discussion of the use of these tools in science: 
http://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731  
I would recommend starting by reading this: 
http://deeplearning.net/tutorial/lenet.html   
then I'd read through the various links on the caffe homepage 
Our own paper which might be of interest: 
https://arxiv.org/abs/1604.01444  
Some other useful papers: 
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf <-- introduces the idea of networks in 
networks 
http://arxiv.org/pdf/1409.4842v1.pdf <-- introduces a specific google network in network 
called an inception module which we've found to be very powerful 
http://www.cs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf <-- semantic segmentation 
Developments in the googlenet, which is great way to track general trends in the field  
http://arxiv.org/abs/1502.03167 <-- introduces batch normalization 
http://arxiv.org/pdf/1512.00567.pdf <-- smarter kernel sizes 
http://arxiv.org/abs/1602.07261 <-- introducing residual layers 
Also fun though I've yet to think of a good hep application: 
http://colah.github.io/posts/2015-08-Understanding-LSTMs/  
http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 

http://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731
http://deeplearning.net/tutorial/lenet.html
https://arxiv.org/abs/1604.01444
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://arxiv.org/pdf/1409.4842v1.pdf
http://www.cs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
http://arxiv.org/abs/1502.03167
http://arxiv.org/pdf/1512.00567.pdf
http://arxiv.org/abs/1602.07261
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


t-SNE Representation of Test 
Sample
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νe Event Count
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CVN sees 33 events on an expected background of 8.2. 
Previous result PIDs: LID(LEM) sees 34(33) events on bkg. of 
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νe Data Overlap, 
S/Sqrt(S+B) Cuts

CVNe
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νe Expected Signal Overlap, 
S/Sqrt(S+B) Cuts, Venn Diagram
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νe Expected Beam Background Overlap, 
S/Sqrt(B) Cuts, Venn Diagram
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νe Appearance Best Fit
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νe Appearance Best Fit
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νe Cosmic Background
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νs Near and Far Detector CVN for NC
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CVN NC Classifier
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νe candidates, when & where?
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Neutrino Mode
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Anti-neutrino Mode
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x10 [1,3]GeV [0,120]Gev

Total 58.7 101.3

νμ 57.3 95.4

νμ 1.0 3.8

νe 0.4 2.1

Neutrino Mode Flux Composition

Alexander Radovic NOνA status and future

[1,3]GeV: (νe+νe)/νμ = 0.6% [1,3]GeV: (νe+νe)/νμ = 0.7%

FD ND

[1,3]GeV: νμ/νμ = 1.7%[1,3]GeV: νμ/νμ = 1.7%

[1,3]GeV [0,120]Gev

Total 68.0 109.1

νμ 66.5 102.6

νμ 1.1 4.1

νe 0.4 2.4
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[1,3]GeV [0,120]Gev

Total 26.7 48.8

νμ 2.7 14.1

νμ 23.8 33.4

νe 0.2 1.3

x10 [1,3]GeV [0,120]Gev

Total 23.1 44.8

νμ 2.4 12.9

νμ 20.5 30.8

νe 0.2 1.1

FD ND

[1,3]GeV: (νe+νe)/νμ = 0.8%
[1,3]GeV: νμ/νμ = 11%

[1,3]GeV: (νe+νe)/νμ = 1%
[1,3]GeV: νμ/νμ = 12%

Antineutrino Mode Flux Composition



Off Axis
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Allows us to select lower energy neutrinos, optimized for our baseline. It also 
means we have a narrowband flux such that we see far fewer neutral currents 
in the electron neutrino appearance region.



Far Detector Prediction
1. Estimate the true energy distribution of selected ND events 
2. Multiply by expected Far/Near event ratio and 𝜈𝜇→𝜈𝜇  

oscillation probability as a function of true energy 
3. Convert FD true energy distribution into predicted FD reco 

energy distribution with systematic assessed by varying all 
MC based steps



Calibration
• Largest effect that needs 

correction is attenuation in the 
WLS fibre 

• Stopping cosmic muons provide a 
standard candle for setting 
absolute energy scale

Alexander Radovic Deep Learning at NOvA
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Simulation
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Simulation: Locations of neutrino interactions  
that produce activity in the Near Detector

X 
(m

)
(linear scale)

viewed from above

Highly detailed end-to-end simulation chains: 
• Beam hadron production, propagatio, neutrino flux: FLUKA/FLUGG 
• Cosmic ray flux: CRY 
• Neutrino Interactions and FSI modeling: GENIE 
• Detector Simulation: GEANT4 
• Readout electronics and DAQ: Custom simulation routines



Reconstruction
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Three key pieces: 
• Vertexing: use lines of 

energy deposition formed 
with hough transforms to 
find intersections  

• Clustering: find clusters in 
angular space around the 
vertex and merge views via 
topology and prong dE/dx 

• Tracking: Trace particle 
trajectories using a kalman 
filter, example below
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Neutrino Oscillations 101

Sun imaged with 𝜈 
(Super-K)

Cosmic rays Daya Bay NPP Fermilab
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Why Study Neutrino Oscillations?
Neutrino oscillations raises as many questions as it answers: 
• Why is lepton sector mixing much larger than quark sector 

mixing? 
• What is the hierarchy of neutrino masses and how does this 

affect searches for a majorana neutrino? 
• Is there CP violation in the lepton sector? Could it be large 

enough to explain observed matter antimatter asymmetry of 
our universe?

Illustration: Sandbox Studio via symmetry magazine
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